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Stationary Measures for the Periodic Euler Flow 
in Two Dimensions 
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We construct for the Euler flow in two dimensions with periodic boundary 
conditions the Gibbsian measures given by the energy and the enstrophy 
integrals. We show that they are infinitesimally invariant under the Euler 
flow. 
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1. I N T R O D U C T I O N  

The basic quantity of  classical statistical mechanics describing large systems 
of  particles in macroscopic equilibrium is the Gibbs measure on the state 
space of  the system. Since for the mathematical study of equilibrium properties 
it is convenient to take the limit of  infinite systems, equilibrium states for 
infinite systems of classical particles have been introduced as probability 
measures on the state space of the systems, namely as the limit points of  
Gibbsian measures for the corresponding finite systems (see, e.g., Refs. 
1-4). In recent years these Gibbs measures for infinite systems of  classical 
particles have also been used to provide the first results on the time evolution 
of such systems3 4-17~ In fact it has been shown in a variety of cases that the 
solutions of  Newton's  equation of motion exist for almost all initial values 
with respect to the Gibbs measure in phase space (~,14~ (see also for related 
work Refs. 5-17). 

In a similar way as the evolution of  a classical system of particles is given 
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by the solution of the Newton equation as a mapping of the phase space into 
itself, the evolution of an  incompressible fluid is described as a mapping of 
the space of velocities into itself given by the solutions of the Navier-Stokes 
(viscid case) or the Euler (inviscid case) equation of classical hydrodynamics. 
In the case of the Euler equation heuristic considerations based on the formal 
invariance of " the  flat measure" in velocity space coupled with the existence 
of the invariance of the motion induced several authors to consider formal 
stationary measures of Gibbsian type (see, for example, the references in 
Ref. 18). 

In this paper we construct Gibbsian measures t~B,y for the two-dimensional 
Euler flow with periodic boundary conditions on a square. We prove that the 
derivation corresponding to the infinitesimal flow given by the Euler equation 
defines a closable skew-symmetric operator B c - B *  in L2(t~B,~) and that 
~e,~ is infinitesimally invariant under the Euler flow in the sense that 
f Bf. d~,y 0 for all f in the domain of B. This gives a first justification of 
the basic Ansatz for a "Gibbsian hydrodynamic" as a statistical mechanics 
in the function space of solutions of the Euler equation (analogous to the 
case of classical Gibbsian statistical mechanics, with the canonical equation 
of motion replaced by the Euler equation). 

This result should also be seen in connection with the statistical approach 
to hydrodynamics (Kolmogorov, Onsager, Batchelor, and others), in particular 
with the functional approach to turbulence started by Hopf ~19) and persued, 
for example, in Refs. 20-23 (see also for work on related equations, e.g., 
Refs. 24 and 25). 

Our approach was strongly influenced by beautiful lectures by 
Gallavotti, C22) and we hope by our work to provide a justification for the 
ideas of Gallavotti and others (see Refs. 22 and 18) concerning the Euler 
flow. 

It would be very interesting to know whether (i • times) the deri- 
vation B on L2(/~,~) corresponding to the Euler equation is essentially 
self-adjoint. This would mean that there is a unique t~,y measurable Euler 
flow. 

As to the more detailed structure of this paper, in Section 2 we introduce 
the Euler equation and the associated conserved quantities, in particular the 
energy and the en~trophy. In Section 3 we define the standard normal distri- 
bution t~ given by the enstrophy integral. We then show the symmetry of iB 
in L2(dt~) and the infinitesimal invariance of IL~ under the Euter flow. We also 
point out that the energy integral E is infinite almost surely with respect to 
/zy; however, a renormalization of it (subtraction of a suitable infinite constant) 
yields a function :E: in L2(dt~). Then we show that the Gibbs measure 
dtz~,~ = (fe-t3:~:dt~)-le -~:~: d~y are equivalent to /zy and infinitesimally 
invariant under the Euler flow, for all fl i> O, 7 > O. 
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2. THE EULER E Q U A T I O N  FOR AN I N C O M P R E S S I B L E  FLUID ON 
A PERIODIC  S Q U A R E  

The Euler  equat ion for  an incompressible fluid in ~ is given by 

Otu = - (u.  V)u - Vp, div u = 0 (2.1) 

where u = (ul,  u2) is the velocity field o f  the fluid and  u. V = u101 + u202 
is the derivative in the direction u; Vp = (O~p, 02p); and at - a/at, a~ = 0/c9x~, 

i = 1, 2. Let  V ~ = ( - 0 2 ,  ~ ) ;  then, since div u = 0, we have that  there is a 
funct ion cp on ~2 such that  

u = V'~o = (-02~0, 01~) (2.2) 

The  Euler equat ion (2.1) then takes the fo rm 

atV• = ~ (V,'~0) �9 V,V '~  - Vp (2.3) 
f 

Since ~,  V~'. Vi a = A and Y.~ V~V, = 0, where A is the Laplacian on [R 2, we 
may  eliminate p f rom (2.3) and get 

atA 9 = - ~  Vj~[(V,S~o) �9 V, Vj• (2.4) 
~j 

which may  be writ ten 

a,A  = (2.5) 
~] 

using that  ~ (V, Vj~o)(V,• = 0. Thus 

0tA~0 = - Vg. V-tA~ (2.6) 

or  equivalently 

atA~ = V*~. VA~ (2.7) 

Let  now ~ be a solution of  (2.7) and set 

f = - OtV• - ~ (V,•  �9 V~V• (2.8) 

Since (2.4) is equivalent  to (2.7), we get by the same rewriting as the one 
leading f rom (2.3) to (2.4) that  V ' f  = 0. Since ~2 is simply connected, this is 
equivalent to f = Vp for  some funct ion p. With  u = V• we then see tha t  u 
is a solution of  the Euler equat ion (2.1). Hence  we have the following theorem.  

T h e o r e m  2.1.  u is a smooth  solution of  the Euler equat ion in Rt 2 

atu = - (u. V)u - Vp, div u = 0 

if and only if u = V• (u, ,  u=) = ( -  029, 01~o), where ~o is a smooth  solution 
o f  the equat ion 
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Following this theorem, we may consider (2.7) to be the Euler equation 
for an incompressible fluid on R2. 

Let now A be the square A = [0, 27r] x [0, 2~r], and we consider the 
equation (2.7) with periodic boundary conditions on A, i.e., we consider 
solutions ~0 t of (2.7) such that ~0t(0, y) = rpt(2rr, y) and ~ot(x, O) = q~t(x, 270. We 
call (2.7) with periodic boundary conditions on A the Euler equation for an 
incompressible fluid on the periodic square A. 

We now define the energy E by 

and the enstrophy 

(2.9) 

s = �89 f (rotu)~ dx = { f ( A #  d~ (2.10) 

I f f ~  C(R) we also introduce the notation 

& = f f(rot u) dx = f f(Aq,) dx (2.11) 

where u = V• and ~o is a smooth, periodic solution of(2.7) on A = [0, 2zr] • 
[0, 27r]. From (2.7) we then get 

dt - 9 V '9 .  VA~o dx = V~. VXr A~ dx = 0 (2.12) 

since Vg. VX~o = 0, and also 

ddt S = fA Aq~ V~o VAq~ dx = - f A  V'A~o. VA~o dx = 0 (2.13) 

since V~A~ �9 VAqo = 0. 

I f f e  C2(R) we get 

_~ & -_ f'(A~) V'~o. VA~ dx = - f"(A~) V-dAy. VA~ dx - -  0 (2 .14)  

For f e  C(R) we get (d[dt)S r = 0 by approximating f uniformly by C 2 
functions. Hence we have the following theorem: 

Theorem 2.2. Let ~ be a smooth solution of the Euler equation for an  
incompressible fluid in the periodic square A = [0, 27r] x [0, 2~r], i.e., 

~tAcp = V• �9 VAcp 

such that 

qo(0, y, t) = qo(2m y, t) and ~o(x, 0, t) = qo(x, 2~-, t) 
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Then E = � 8 9  S = � 8 9  h~~ a n d ,  for f ~ C ( R ) ,  S r = 

f~ f(A~o(x)) dx are constants of motion, i.e., independent of t. [ ]  

Let us now expand ~0(x, t) in Fourier series 

1 
~o(x, t) = ~ ,--~-2 wk(t)e'~X (2.15) 

k r  

where o~_k = ~k since ~o is real and we have chosen ~o such that f^ ~o dx = O. 

This we may always do since an additive constant obviously drops out of  
Eq. (2.7) as well as from the velocity field u = V'% Equation (2.7) now takes 
the form 

2 d  
k ~ o~z = -h+~,= k (h • (2.16) 

where h' = ( - h 2 ,  hi). Since h • = hzh2' - h2hl' is antisymmetric in h 
and h', (2.16) may also be written 

k27toJ = ~2nl +~,=~ (hZh')[h 2 - (h')2]oJ~o~, (2.17) 

The energy E and the enstrophy S are given respectively by 

E =  � 8 9  k~l~%l ~- and S = �89 k%,~l ~ (2.18) 
k k 

If  we introduce the functions Bk(~o) defined on the space of sequences 
{o)k}, k ~ Z 2, k ~ 0, such that oJ k = N_e by 

1 
(h• 2 - (h')2l~ohwh, (2.19) B ~ ( o , )  = ~ - ~  ~ + ~" = 

then (2.17) takes the form 

d 
-di ~ = B~(oJ), k ~ Z ~, k va 0 (2.20) 

Since for h + h' = k, (h a.h') = (h. k) and h 2 - (h') 2 = - k  2 + 2(h.k), we 
have 

1 

From (2.19) we see that 

aBe/&% = 0, k e Z =, k va 0 (2.22) 
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3. G I B B S  M E A S U R E S  FOR THE EULER F L O W  

F o r k ~ Z  2 w e w r i t e k >  0 i f f k = ( k l , k 2 )  withk~ > 0 o r k l  = 0 a n d  
k2 > 0. Let Hs be the complex Hilbert space of sequences {c%}~ > 0 with the 
inner product 

@, ~o)s = S(~)  = ~ k*l~%l ~ (3.1) 
k > 0  

Let Hrs be the same Hitbert space with the inner product ~. (~o, oJ)s = vS(o~) 
for y > 0. Let d/z r be the standard normal distribution associated with the 
complex Hilbert space Hrs and let E r be the expectation with respect to d/zr. 
We then have that 

E~(e~m'~)~) = f e'r(~'~)~ d/~r(~o) = e-  ~ , ~ / 2  (3.2) 

for any u e Hs.  Here Fr is a probability measure on a compact space Xs which 
contains Hs as a dense set of measure zero. The probability space (Xs,  Fr) 
may for instance be constructed as follows. 

Let tzr k be the probability measure on C, the complex numbers, given by 

d~rk(z) = (27r/yk~) - ~ exp(-�89 =) dx dy (3.3) 

for any k e Z 2, k > 0, where z = x + iy, and let C be the one-point com- 
pactification of C. Then 

(Xs,  ~r) = , ~  ( C , / ~ )  (3.4) 

/ r  

is a realization of the standard normal distribution on Hrs. Remark that cob 
and oJh, are independent normally distributed for h # h', and their expecta- 
tion is zero, i.e., Er(oJh) = 0, while their covariance is given by 

E,(~%~%,) = 0 (3.5) 

and 

E,(~ho~h,) = 28h~.~'- lh-  ~ (3.6) 

Let now 

B~"(~) = y~ (h �9 k)(h. k) - g (h I. k) ~ o ~ _  

B2(~o) is a measurable function on (Xs,  I~r). Moreover, 

[1 ] 
E,(IB~-I ~) = ~ ~ ( h ~ - ' k ) ( h ' k )  - ( h ~ . k )  

h2<~n 
(h ' )  ~ ~ n 

I1 1 ) x ~-~ [(h ') l .k](h ' .k)  - g [(h')a.k] E(Nn~_h~%,c%-~,) (3.8) 
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But 

E(Nh~k-Uwh,w~:-U,) = 43hh,~,-2h-~(k - h) -~ + 43~,~_h,~,-2h-~(k - h) -4 (3.9) 

Hence 

1 ( h Z . k ) 2 ( h . k ) 2 _ 2 h _ 4 (  k _ h)_ ~ (3.10) E,(IB~"I ~) < 8 .~ 
hCk  

o r  

E,(IBk"[ 2) ~< 8~, -2 ~ (k - h) -4 (3.11) 

In the same way we get for m < n that 

E,(IBk '~ -- Beml 2) ~< 8y -z ~ (k - h) -~ (3.12) 
hr 

h2>m 

This proves that B~" converges in Lz(dt~)  to Bk(co) as n -+ oo. Therefore B~(~) 
is txr-measurable and in fact in L2(dtLy). 

Let now F C I ( H s )  = F C  1 be the space of differentiable functions on Hs  
depending only on a finite number of coordinates oJ~. Obviously F C  ~ is dense 
in L2(dtz~). Let B be the vector field 

O 
B = ~ Bk(~o) (3.13) 

t~6otc 

Then B is defined on F C  ~ and maps F C  1 into L2(dlzr). From (2.22) we have 
that B is divergence-free, 

div B = ~ &%OBk = 0 (3.14) 

Now since B is divergence-free and S is invariant under any solution of the 
equation 

d 
~7 ~o~ = B~(,o), k e Z 2, k ~ 0 (3.15) 

one may expect that t~r is an invariant measure for the Euler flow. Since we 
have not constructed solutions of  (3.15) for tzr-almost all initial conditions 
oJ, the question of whether/xr is invariant is, of  course, premature. However, 
another relevant question is whether ~, is infinitesimally invariant in the 
sense that 

f B fd l~ ,  = (3.16) 0 
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for  all f ~  D(B) = FC ~, i.e., whether B*.  1 = 0, B* being the adjoint in 
L2(dtzy). To compute  B* we need to compute  (~/&J~)*. N o w  if ek is the kth 
coordinate  direction, then 

d f f(o~)g(~o + tek)dl~(~o)It=o (3.17) 

for  a n y f i  g ~ FCL 
It is easily seen f rom (3.3) and (3.4) that  

~,(o~ - tek) = [ e x p ( -  ~2~,k4t ~) e x p ( -  yk~t~)]/~,(o~) (3.18) 

Therefore  

f f ~ d/,,(r = - f  (O..~_ f )  g dt,~(r - yk~f~: fg  dl~,(o~) (3.19, 

Thus 

= 8 -_~  yk%~ (3.20) 

F r o m  this we get, since/~k(~o) = B_k(~o), 

) = - ~ + y ~ k4~Bk f -  B~ ~f (3.21) 
h: ~r 

By (3.14), ~k (SBk/&%) = 0, and f rom (3.1) we have that  

d Bk aS (3.22) 

1 ~ (h • . h,)[h2 _ (h,)2]~%ojw 
Bk(~ -- 2kZ n + n, = k 

with 

and by Theorem 2.2, dS/dt = 0, so that  f o r f ~  D(B) = FC 1 we have 

B*f = - B f  (3.23) 

i.e., B* D - B .  In particular we get that  B*I = - B 1  = 0, so tha t / z  r is in- 
finitesimally invariant. Hence we have the following theorem: 

T h e o r e m  3.1. Let u(x, t) = (i/27r) ~k~0 k• ~x, ~k = ~ be the 
Fourier  expansion for u(x, t). Then  the Euler equation (2.1) is equivalent to 
the equat ion 

d 
,oh(t) = B~(~o), k ~ Z  ~, k # 0 
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The energy and enstrophy are given by E = �89 ~k k21c%[ 2 and S = ~ k%k] ~. 
Let H~s be the Hilbert space with square norm given by yS for y > 0 and/zy 
the standard normal distribution associated with Hys; then Bk(w)E L2(dtzy) 
for any y > 0. Moreover, the vector field B = Zk Bk 0/c3oJ~ maps FC~(Hs) 
into L2(dtzr) and thus defines a densely defined operator on L2(dlzy). Moreover, 
iB is symmetric in the sense that B* ~ - B  and therefore B is closable. The 
measure/z~ is infinitesimally invariant under the Euler flow in the sense that 

af dt~ = O 

for a n y f ~  FCL m 

Set now 

1 E, =~ ~ k2[c%l 2 (3.24) 
h:2~<n 

Then E,(~o) f E(~o) as n -+ oo. From (3.6) we get that 

f 1 E,(oJ) d~,(w)= y -1 ~ ~ (3.25) 
h:2~<n 

which tends to infinity as n ~ oo. Therefore E(co) is not /,~-integrable. On 
the other hand, setting 

1 (k2]oj~]2 2 :E: ~ ~ ~ ~'~) (3.26) 

we have that :E:(w) e L2(dt*~), in fact 

f (:E:)2 dlzy = y-2 ~ k -~ (3.27) 

This implies that :E:(oJ) is finite for/,y-almost all w, which in turn implies 
that E(oJ) is infinite for tz~-almost all oJ. Hence with respect to the stationary 
measure tz~ the energy E is infinite with probability one. It is well known from 
the theory of normal distributions ~ associated with a Hilbert space H that if 
E is a quadratic function on H given by a Hilbert Schmidt operator, then 
e-B:E: is in Lz(dlz) for any/3 > 0. Since ~ k -~ < oo we have that E is given by 
a Hilbert Schmidt operator on H~s, hence that 

e-e:E: ~ L~(dtzr) (3.28) 

for any positive/3 and y. Therefore 

)1 
d/xa,r = e -a:s: d/zr e -a:E: dt*, (3.29) 
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is a probability measure which is equivalent to/zy. It follows from well-known 
results about  normal distributions that tz~ and ~y, are disjoint if Y v~ Y'. We 
call/zB, r for positive Y and nonnegative/3 the Gibbs measure for the Euler flow. 
One easily proves that B*:E: = 0, from which it follows that B*e -B:~: = 0, 
which gives us that t~B,y are infinitesimally invariant. Thus we have the follow- 
ing result: 

The energy E = �89 ~ k21~%12 is infinite for/zr-almost all Theorem 3.2. 
oJ. I f  we define ~ 

: E :  - -   21,o 12 - 

then :E: is in L2(dlzr) and thus finite ~7-almost everywhere. Moreover, 
e -B:8: eLl(dlz~) for any/3 t> 0 and any 7 > 0. The Gibbs measures 

(f 1 d/za,r = e -a=E: dt~, e -a:E: dtz, 

are equivalent to/~r and infinitesimally invariant in the sense that, for any 
f e  FC 1, f BfdtLe,y = 0. Moreover, :E: is an infinitesimally invariant function 
in the sense that :E: e D(B*) and B*:E: = 0. The measures tzr and/zr have 
disjoint support for y # y'. 

NOTE A D D E D  IN P R O O F  

After submission of this paper we received a preprint "Equil ibrium states 
for the two-dimensional incompressible Euler fluid" by C. Boldreghini and 
S. Frigio (Camerino and Roma) which contains related results, obtained 
independently. 
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